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The stability of the three-dimensional multiple-charged soliton solutions to the 
nonlinear field equations is studied by Lyapunov's method. It is proved that an 
absolutely stable soliton solution can not exist in any field model. By imposing 
the subsidiary condition ~otSQt = 0 (fixation of charges) we find a sufficient 
condition for stability of the stationary soliton which includes the inequality 
~.~i(OQ,/Ook) < 0. An illustrative example is considered. 

1. GENERAL STABILITY CONDITIONS FOR 
THREE-DIMENSIONAL SOLITONS 

In the last ten years the soliton solutions to the nonlinear field 
equations have found numerous applications in various branches of physics. 
In particular, one can notice the increasing interest in Einstein's geometrical 
program, which included the use of soliton solutions for the description of 
extended particles (Faddeev, 1979). In this paper we mean by soliton the 
localized regular solution to field equations with finite energy and other 
dynamic characteristics. 

One of the important problems in soliton physics is the study of soliton 
stability. Here we shall study the stability of realistic three-dimensional 
solitons in the Lyapunov sense, i.e., stability with respect to shape 
(Benjamin, 1972; Rybakov and Chakrabarti, 1981). 

Let ~p = {~p~(t, ?)}, s =1 . . . . .  n, be a real n-component field satisfying 
the second-order equations of motion. Let ~0 = u be stationary (periodic in 
time) soliton solution, which is supposed to be localized in the domain of 
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unity size. This signifies that u has the following asymptotic behavior at 

r - -  I~l-- ,~:  

u( t ,? )=O(e  -r) (1) 

Let U be the set of fields obtained from u by 3-translations, 3-rotations, 
and admitted gauge transformations. The soliton solution will be called 
perturbed with respect to shape only if cp ~ U. It is clear that in this case cp 
will be nonstationary solution to the field equations. Let us denote the 
perturbation of the soliton solution u by ~ = cp - u. Following Rybakov and 
Chakrabarti (1981) we introduce two functional metrics: po[~o(?)] and 
p[tJ;(t, ?)] for the characterization of the initial and current perturbations, 
respectively. We assume that the metric p is continuous with respect to the 
metric P0 and p(~) = 0 if cp ~ U. 

Soliton solution u is called stable in the Lyapunov sense with respect to 
the metrics P0 and p, if for any e>  0, one can find 8(e)> 0 such that for 
P0(~o) < 8 the inequality p(~) < e holds for any t > 0. The study of stability 
of stationary solitons in scalar (Rybakov, 1979) and spinor (Rybakov, 1965) 
models showed that the absolutely stable stationary solitons cannot exist. 

Therefore it is reasonable to consider the conditional stability of 
solitons, that is, to impose some subsidiary conditions on the initial per- 
turbations (0- This procedure seems to be inevitable to provide the stability 
of solitons. To demonstrate the general character of this fact, we show in 
this paper that in any realistic three-dimensional model only conditionally 
stable solitons can exist. 

Theorem 1. In translationally invariant theory the stationary soli- 
tons cannot be absolutely stable in the Lyapunov sense (Rybakov, 
1983). 

Proof It can be noted (Movchan, 1960) that for stability of soliton 
solution u with respect to the metrics P0, P it is necessary and sufficient that 
there exist a Lyapunov functional V[qv] with the following properties: 

1. The soliton solution u is a stationary point of V. 
2. V is definitely positive with respect to the metric p in some 

neighborhood of u. 
3. V is continuous with respect to the metric P0- 
4. V does not increase along the trajectories of motion. 

Assuming the stability of the solution u, we shall show that the additive 
functional V with the properties mentioned above does not exist. 
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Let us take into account that in a translationally invariant theory the 
additive Lyapunov functional should have the form 

=fd3xU(~p,  Odp,~p ), i = 1 , 2 , 3  (2) V[~]  

where ~0 = O~/Ot. 
We introduce the following notifications: 

u;  = a u /  acr uj= o u /  o ( o,~.~ ), Us = a u /  a~ ~ 

The field u being the stationary point of the functional V, it satisfies 
the equations 

Us= o, Us - a,u/= 0 (3) 

Write down the second variation of the functional V in the neighbor- 
hood of u: 

~2V[~, ~] = f d 3 x ( U s r ' ~ S ~  r q - 2 U s r ~ S ~  r q - U r s ~ S ~  r 

" i ' s  r ik r s i r s +2U~,~ 0,~ + Urs Oi~ Oqk~ 4-2Ursai~ ~ } (4) 

Let us put in (4) the special perturbations: 

~s = fjO;it~, ~ = fjOju s 

where f J(?) represents sectionally smooth functions. Using the equations 
(3), 62V can be transformed to 

8~V[i]=fd~x[a,i'A$~a~iJ+(a,i'iJ-i'O,iJ)BT, ] (5) 

Aqik__ gtu,Uff Oju ~, 2 B i t  = O [ j U r i O i ] u r =  _2Btij 

where 

(6) 

Note that for the positive definiteness of ~2V it is necessary that in (4) the 
quadratic form in derivatives Us~kO~rOk~ s would be positive (the 
Legendre-Hadamard condition). Hence the first term in (5) is positive, 
while the second one is evidently sign changing. Using the equation (3), it is 
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not difficult to obtain the relation 

O , Bj, = O 

from which it follows that 

2 BjI - -  eik. o -- k any/ 

where 
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(7) 

i - r  = / ( r )  
E n k i  _ _  _ _  _ a,,j t y-~-Ok f d3x 'Bj 

" I~-~1' 

Performing in (5) the integration by parts and using (7) we get 

(8) 

Now it 

+gk"a,,:t)akf-/] (9) 

is sufficient to ascertain the sign-changing character of the 

2. CONDITIONAL STABILITY OF MULTIPLE-CHARGED 
SOLITONS 

Let us search for the sufficient criteria of conditional stability of 
stationary solitons. Let us consider the real n-component field 'I, = ('t,-' }, 
s = 1, N, and the corresponding Lagrangian density 

L = - F( , i , ,  a , ~ , ~ , )  

assumed to be invariant under the orthogonal transformations 

't'--,exp(a'F,)'I', r f = - r , ,  t =  1 , n ,  (10) 

with the commuting generators 1"/: 

[ r , , r k ] _ = 0  

integrand in (9). With this aim let us consider the asymptotic region r ---, ~ .  
In this case from (8) it follows that a, , j /= O(r-3),  while from (1) and (6) we 
get that A~ = O(e-2r). Thus we conclude that the integrand in (9) is sign 
changing for r ---, ~ ,  which contradicts the initial assumption on stability of 
the soliton solution u. The theorem is proved. 

In light of this result one can only speak of conditional stability of 
stationary solitons. 
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The transformations (10) imply the existence of the conserving charges Qt, 
the fixation of which can be considered as the natural subsidiary conditions 
on the initial field perturbations. 

The nonperturbed soliton solution will be assumed of the form 

't'(o ) = exp(~St) u (11) 

where o5 = ~otF/, ~o t being constant frequency parameters. In view of (11) it is 
convenient to take the field function �9 of the perturbed soliton in the form 

,It = exp(,.",t) 9~ 

which reduces the Lagrangian density to 

t = - F(d~cp + ~, O,qv, qo) 

Let us choose the Lyapunov functional V as the linear combination of the 
energy E and the charges Q/: 

where 

V= E - oJQ/= f d3x( F - (12) 

Q,= - f d 3 x [  F~ (Ftep)] (13) 

It can be easily seen that the state (11) is a stationary point of the functional 
(12), satisfying the equations 

aiF, ~ -  F s - g~h~ = 0 (14) 

Let us impose the following subsidiary condition on the perturbations 

ofl6Qt = 0 (15) 

i.e., the fixation of the quantity F~{kdQ/. Write down the second variation of 
the functional (12) in the neighborhood of u: 

" i  ^ S r 

+ F,,~(" + F,~kO,~'Ok~ * +2FsirOi~s~ r} (16) 
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and the condition (15) 

- f d 3 x ( F ; A  ~) = (g, ~) 

=fd3x{[F, ; (Co~)  r + F~~*O,~" + F,;] (&u)' + F, (&()" } 

(17) 

As is clear from (16), for definite positiveness of 32V the positiveness of the 
form -F~~s~ r is necessary. Hence there exists the square root A of the 
matrix - F~ = (AZ),r. Using the Schwartz inequality 

(y,  y)( Ax, Ax) >1 ( Ax, y)2 

for x s = ~,  y '  = (A&u)" and representing ~2V in the following way, 

3 2v= (4, A2~) + (~, L~) (16') 

we get the estimate 

82V>_. (~, L~)+ a-a(g, ~)2= ( ~ , / ~ )  (18) 

Here the self-conjugate operators k and L are introduced and 

a = - f d 3 x {  F,; (C,u)'(,:,u) r } > o  

Taking the special perturbation 

li" = ~J( OuS/ Ood) - v s (19) 

and using the equations of motion (14) differentiated by tJ, the following 
relation can be deduced: 

S - - - -  " k  ^ r 1 .,,.,,.(OQ,,,/o,o,){- ok[ Fr . (,ou) ] (l~v) a 

+ Fr'~ r + ((ou)r(Fr;'&~ + Fr's) } (20) 

Introducing the designation 

=,o',om(oo_~ 
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we find from (20) and (13) that 

( v, [s = ( f / a ) ( f  - a )  (21) 

On the other hand, if )~(~) is the first eigenvalue of the operator/s 
then from (18) it follows that the stability domain ~o in ~ space is defined 
by the inequality X(~) > 0. Let us assume that in some region ~ z ~o, X(~) 
is the single eigenvalue, which can be negative. If in ~, the inequality 
cd(0)~/0~d) >/0 holds, then from (20) it follows that the boundary Eo of the 
stability domain is defined by the equality f ( ~ ) = 0  and v"lz0 is the 
eigenfunction of the operator/~ corresponding to the eigenvalue X = 0. Now 
it is seen from (21) that the stability domain g2 o is defined by the inequality 

f ( E)  = totos a Q . , /  o d  ) < 0 (22) 

Thus we have proved the following statement generalizing for the multiple- 
charged solitons the well-known theorem on Q stability of scalar stationary 
solitons (Kumar et al., 1979; Makhankov, 1978). 

Theorem 2. If there exists a domain ~ in ~ space such that (1) the 
operator k has a single eigenvalue X(~) which can be negative, (2) 
X(~) increases along the ~ direction, then the stability domain 
~0 c ~ can be defined by the inequality (22). 

3. ILLUSTRATIVE EXAMPLE 

Let us demonstrate an example illustrating the application of the 
Theorems 1 and 2. Consider the isospinor Synge's model defined by the 
Lagrangian density 

L = X + 

where ~ r=  (~01 ' cp2) ' the isospinor field. The equations of motion admit the 
stationary solution of the form 

qo~ ~ = uk ( r ) e x p ( -  ico,.t), u~ = u k (23) 

where u k satisfies the equation 

(A I+~Z. + u ) u k  O, u ( u ? +  2,1P- 
- -  "~ = ~ - - -  U 2) , k =1,2  (24) 

From (24) one can easily derive the relation 

( , 4  - , 4 ) ( . , ,  . 2 )  = 0 
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which indicates that for c0 x 4~ 0)2 one of the functions Uk, must have a node. 
In particular, if 0)I > 0)2 then by Courant 's  theorem (Courant  and Hilbert, 
1953) u 2 > 0 and u 1 is nodal. Defining the perturbation of the soliton 
solution by 

~k + i71k = ~kexp( i0)kt )-- u k 

and taking the special perturbation i t  4= 0, a71 4: 0, 42 = 772 = 0, we come to 
the scalar case of perturbed nodal stationary solution ~0~ ~ = u l e x p ( -  i0)lt ). 
As was shown in the paper  by Kumar  et al. (1979) such a solution is Q 
unstable. Therefore we conclude that only for 0)1 = 0)2 = 0) the stationary 
soliton may be stable. In this case the Lyapunov functional takes the form 

V = E - 0)1Q1 - 0)2Q2 

=E 0)(Q1 +Q2) (25) 

and the solutions to the equations (24) can be represented as u 1 = ucos/t;  
u 2 = usin/L,/~ = const. Taking into account the results of Section 2, we can 
obtain the following estimate for the second variation of the functional (25): 

4 

32V>~ y" ( h i , K i h i )  
i = l  

where the perturbations are redefined: 

h 1 = ~lCOS~ + ~2sin~, 

h3 = B1, h4 = ~2 

h 2 = - ~xsin/z + ~ 2 c o s ~  

and the following self-conjugated operators are introduced: 

/~1 = /~2 - -  U q- 40)aPu, /~2 = K 3  = K 4  = 1 - 0) 2 - A - u (26) 

Here P, denotes the projector on u. 
The spectrum of the operators /s was investigated in the paper  by 

Kumar  et al. (1979), where it was shown that the domain of Q stability is 
defined by the inequality I0)1 > 1/v~- in accordance with the Theorem 2. 
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